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Abstract-The three-dimensional interaction of an initially cylindrical vortex tube with a solid sphere in a 
stratified temperature field has been investigated by solving the Navier-Stokes and energy equations. 
Particular attention is given to the coupled effect on the sphere Nusselt number by the vortex advection 
and temperature stratification. Comparison with the sphere Nusselt number influenced by a vortex in a 
uniform temperature field [Masoudi and Sirignano, In?. J. Heat Mass Transfer, 1997, 40(15), 3663- 
36731 showis that stratification has a profound effect on the sphere Nusselt number, qualitatively and 
quantitatively. Transient Nusselt number patterns are entirely different from those in a uniform temperature 
field; temperature stratification influences the vortex impact by nearly three fold. The sphere Nusselt 
number can be represented as the sum of Nusselt numbers in a uniform free-stream temperature at the 
average value and in a stratified stream with the given temperature variation and average temperature of 
zero. Therefore, in contrast to the commonly studied uniform free-stream case, stratification introduces an 
explicit dependence of the sphere Nusselt number on the temperature quantities. A correlation quantifying 
the coupled effect of the vortex-temperature stratification on the sphere heating, signifying a self-similar 
pattern in this unsteady problem has been produced. This correlation is also shown to be approximately 
valid for a liquid sphere. When the product of the vortex circulation and the gas-field temperature gradient 
is positive, the sphere time-averaged Nusselt number increases monotonically with an increase in the vortex 
circulation and with an increase in the vortex initial distance from the flow symmetry axis; when such 
product is negative, the Nusselt number increases with a decrease in vortex circulation or the vortex 
distance. Beyond a certain range of the vortex initial distance, the time-averaged Nusselt number reaches 
an asymptotic value. Based on these findings, it can be shown that in spray combustion systems coupled 
vortex-temperature stratification could have significant effect on droplets convective heating and their 

eventual evaporation. 0 1998 Elsevier Science Ltd. All rights reserved. 

1. INTRODUCTION 

The fluid dynamics and heat transport for a cold liquid 
droplet in a hot gaseous axisymmetric environment 
are well-understood phenomena and there exists sub- 
stantial literature (exploring many different aspects of 
such problems [l:I. There however is a shortage of 
literature exploring droplet heating and vaporization 
when the far-field flow embracing the droplet under- 
goes temporal and/or spatial variations in both the 
velocity and temperature fields. Existing literature has 
focused on variatllons due to acoustical waves [2, 3, 
41. The effect of vertical or thermal disturbances, as 
well as the effect of a coupling between the two, has 
not been widely examined. 

There could exist two types of perturbations influ- 
encing the heating of a cold sphere in a hot gaseous 
environment-flow and thermal. Such a class of prob- 
lems appears when the droplet transport properties 
are subject to velocity and temperature fluctuations in 
a turbulent flow, such as what might occur in a liquid- 
fueled combustor. In particular, in a combustor spray, 
the droplet size is - 100 microns. In the turbulence 

t Author to whom correspondence should be addressed. 

spectrum for many continuous combustors, this 
length-scale corresponds to that of the Kolmogorov 
scale ; thus, the droplet transport phenomena can be 
subject to turbulent effects primarily associated with 
those of the Kolmogorov scale. Besides, droplets in a 
spray combustor are typically subject to, not a uni- 
form but, a spatially varying temperature field in the 
gas phase (partly due to the ‘stirring’ effect of vertical 
structures and partly due to other parameters such as 
design constraints). Thus, the question remains to be 
one of coupled flow-thermal perturbations in the gas 
phase influencing droplet heating in combustors. 

In this approach, we have considered turbulence 
as a manifestation of vortex dynamics [5]. We have 
represented the perturbation in the flow field by intro- 
ducing an advecting Rankine vortex whose tangential 
velocity is weaker than the base flow. Furthermore, 
we have introduced an initially stratified temperature 
profile in the gas field to provide spatial variations in 
temperature. Thus, the coupled influence of the flow- 
thermal perturbations may be studied by introducing 
both an advecting vortex and an initially stratified 
temperature profile in the gas field. 

Recent publications of the authors [6, 71 provided 
insight into the effect of hydrodynamic disturbances ; 
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NOMENCLATURE 

a’ 

d 

Fo 
N,, N, 
NU 
P 
Pr 
q” 
r, 0, $J 
Re 

t 
T 
a, 0, w 

V 
x, Y, z 

dimensional sphere radius 
(characteristic length) 
vortex offset distance from the base 
flow symmetry axis (normalized by 

a’) 
Fourier number 
N, number of grid points in (5, r~, 5) 
Nusselt number 
pressure 
Prandtl number 
heat flux 
spherical coordinates 
base flow Reynolds number (based on 
sphere diameter) 
time (normalized by a’/C&) 
temperature 
flow velocities in (x, y, z) directions 
(normalized by u,) 
maximum tangential velocity 
of vortex tube (normalized by 

u’,) 
dimensional free stream velocity 
(characteristic velocity) 
velocity vector 
Cartesian coordinates. 

Greek symbols 
I- vortex tube circulation 
K coefficient of initial temperature 

stratification 
V’ kinematic viscosity of the gas-phase 
(5, ye, c) computational coordinates 
0 radius of vortex tube (normalized by 

a’) 
r shear stress 

* stream function 
w vorticity. 

Subscripts 
ax quantity in the corresponding 

axisymmetric flow (flow with no vortex) 

g quantity in the gas-phase 
i sphere surface (gas-solid interface) 
mid (middle) the grid point half-way 

between the first and the last one 
S quantity in the solid-phase 

; 
vortex quantity 
initial quantity. 

Superscript 
dimensional quantity. 

they introduced perturbations in the velocity field by 
introducing an advecting Rankine vortex. They 
reported new perspective into droplet heating influ- 
enced by vertical disturbances as well as a correlation 
signifying a self-similar behavior in such an unsteady 
problem [6]. The correlation compliments the existing 
ones for droplet heating in an axisymmetric flow [S]. 

In this work, we are extending the previous study 
by coupling the flow and thermal perturbations. Flow 
perturbations are again induced by an advecting 
vortex. Thermal perturbations are now represented 
by a spatially varying gas-phase temperature profile. 
In such a configuration, the vortex ‘stirs’ the flow 
and therefore mixes the relatively hotter gas with the 
colder gas near the sphere stimulating the convective 
heat transfer. Further description on the vortex struc- 
ture and the gas-phase temperature profile are given 
in the sections Initial Conditions and Vortex Tube 
Features. 

2. FLOW DESCRIPTION, GOVERNING 
EQUATIONS, AND VORTEX CHARACTERISTICS 

Here, we present a summary of our approach cover- 
ing the governing equations, the boundary and initial 
conditions, and the computational approach. 
Adequate references have been cited for further 
details. 

Consider the three-dimensional, unsteady flow field 
surrounding a cold solid sphere impulsively injected 
in a hot gaseous environment with the sphere sub- 
sequently subjected to an unsteady interaction with 
a vortex tube. We numerically solve the governing 
equations for the velocity and the temperature fields ; 
these are the Navier-Stokes and the thermal energy 
equations. The continuity equation is satisfied 
through pressure correction. The problem is nonlinear 
by nature. Constant properties are assumed in both 
the gas and the solid domain. The deceleration of the 
sphere due to the drag force is not considered. The 
equations and the boundary conditions are non- 
dimensionalized using the sphere radius a’ as the 
characteristic length, the undisturbed free stream vel- 
ocity u, as the characteristic velocity, and the average 
gas temperature far upstream r,,, as the charac- 
teristic temperature. The governing equations are : 

Gas phase 
v-v,=0 

Dv,_ 
Dt 

- -VP,+ $v2vg 
g 

2 DT, 
Dt 

- pV2T. 
Re, Pr, g 

(1) 

(2) 

(3) 
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Fig. 1. Flow geometry, initial velocity, temperature profiles, and vortex location d,-(a) K > 0, (b) K < 0. 

Solid phase 
aT 2 
._ = %V2T,. at 

These governing equations are transformed to the 
coordinates (5, q, 0; see Fig. 1. 5 is the radial, q is 
the angular, and c is the azimuthal direction. The 
numerical integration of the equations is performed 
using a computational cubic mesh with equal spacing 
(St = 6r/= sy = 1). 

2.1. Gas-solid interjkce conditions 
The conditions at the interface are: zero normal, 

azimuthal, and polar velocity components, continuity 
of the heat flux and temperature. These conditions are 
conveniently cast in terms of spherical coordinates 
(~,@,c#J) with the origin at the center of the sphere. 
This allows the interface conditions to be applied at a 
constant value of the radius ; also, the axisymmetric 
base case is more easily expressed. The (5, q, i) coor- 
dinates have the same orientation as the spherical 
coordinates (r, 8,+) but obey an imposed stretching 
allowing a relatively denser grid concentration near 
the interface. 

vgJ,i = 0 

V -0 &@.I - 

v 0 &I = 

Tg,i = T,,i 
,, _ ,, 

qg.1 - q.,i. 

Here, q” is the heat flux from the hot ambient gas into 
the cold sphere. 

2.2. Gas-phase boundary conditions 
(N,, N,, N,) and (NIi, N,, NJ are the number of grid 

points in the gas and solid domains, respectively, in 
(<,q,c) coordinates. 5 at N,i and N, are the sphere 
surface and the gas farfield, respectively. The imposed 
far-field pressure, gas velocities in the x, y, z directions 
and gas temperature are 

p = 0, u=v=o, w= 1, T=l at[=N, 

and 
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N 2mld G rl < N,(upstream). 

au au aw ai- __=__=-= P = 0, ag ag at p=O at5 = N, 

and 

1 < q < NZmid(downstream) 

2.3. Symmetry conditions 
Since the cylindrical vortex tube advects with its 

axis of symmetry parallel to the y-axis, symmetry is 
maintained with respect to the so-called principal 
plane-the y-z plane. We thus solve for half the 
spherical domain rather than the entire domain, and 
thus reduce the computational time. 

ap au aw aT 
x al ai x -0; v=O at[=l,N,. 

Initial conditions 
In the gas phase, the initial conditions for the vel- 

ocity field are 

u,(x,y,z) = 5 
z--z,0 

71 [(x-x,# + (z-z”o)2 +aolZ 

vo(x,y,z) = 0 

wo(x,y,z) = l-5 x--x,0 

7rd [(x-x”o)2+(z-z”,)2+(r012 
(5) 

i.e., the initial velocity in the gas phase is due to a 
uniform base flow (u, = 0 = vo, w. = 1) and the cyl- 
indrical vortex (-I,). In the absence of the vortex, 
the problem reduces to the well-studied axisymmetric 
flow around a sphere. Further description of the vor- 
tex is given in the section Vortex Tube Features. 

The initial and free-stream gas-phase temperature, 
influencing the heat transfer to the sphere, is a crucial 
component of this study. We have imposed an initial 
and free-stream spatial temperature distribution of 
the form 

To(x,Y,z) = 
T max,~ + Tmin,o 

2 > 

+ ( Tmax’o i Tmin’o) tanh(rcx) (6) 

which is shown in Fig. l(a) and (b). The imposed At each time step, the drag, lift, and moment 
temperature gradient has a length scale embodied in coefficients and Nusselt number of the sphere are 
the coefficient K~‘. The problem involves two other evaluated. The entire procedure is then repeated for 
length scales-those of the flow (sphere radius) and the next time-step. Further details may be found in 
the vortex. The coefficient K, signifying the tem- previous publications of this research group [6, 7, 9, 
perature gradient in the initially imposed stratified lo]. High precision computations for benchmarking 
temperature profile, is chosen such that a physically purposes were executed on the Cray, taking an aver- 
realizable change in the temperature takes place over age runtime of about 5 cpu h. However, by using a 
a length scale comparable to the sphere radius and the normalization procedure (see end of the section The 
vortex length scale. If K-I is much smaller/larger than Sphere Convective Heat Transfer), we avoided such 
these other length scales, the effect of the stratification long computations and, using less mesh points, pur- 
is too unrealistic/weak. We have chosen the values sued most executions on a Dee-alpha or Convex 3840, 
0.15 < K < 0.6. This range of K yields the change from taking average runtime of about 18 and 14 cpu min, 

Tmin.0 to Tmax,~ near the sphere over 15-3 length scales. 
Note equation (6) yields the average temperature 
Tg = ( T,i,,o + T,,,,,,)/2, the characteristic temperature, 
on the base flow symmetry axis. K > 0 means that the 
initial gradient in the temperature profile aligns with 
the positive x-axis. We have considered temperature 
distributions with K > 0 and K < 0 for a full range of 
vortex initial positions. 

Other possible profiles for the gas-phase initial tem- 
perature distribution, such as linear or exponential 
variations, were less interesting since they yield physi- 
cally meaningless values for the temperature and so 
were not utilized. The hyperbolic tangent profile uti- 
lized appeared to yield a reasonable spatial change in 
the temperature. 

The imposed initial solid sphere temperature is uni- 
form with Ts,o < Tg,o. In the calculations, the sphere 
temperature was lower in value than the minimum 
free-stream fluid temperature ; therefore, T,,,,,,. is not 
the minimum temperature for the full flow field. 

2.4. Numerical solution 
A three-dimensional implicit finite-difference algo- 

rithm solves the set of discretized partial differential 
equations. The control volume formulation is used to 
develop the finite-difference equations. The method 
employs an Alternating-Direction-Predictor-Cor- 
rector (ADPC) scheme to solve the time-dependent 
equations. 

The overall solution procedure is based on a cyclic 
series of estimate-and-correct operations. At each 
time-step, we first regard the solution in the gas-phase ; 
the velocity components are first calculated from the 
momentum equations using the ADPC method, where 
the pressure field at the previous time step is employed. 
This estimate improves as the overall iteration 
continues. The pressure is calculated from the pressure 
correction equation using the successive over- 
relaxation method. The new estimates of pressure and 
velocities are then obtained. These known quantities 
are used in the energy equation to solve for the gas- 
phase temperature field. 

Next, we use the interface conditions to solve for the 
interface values, followed by the sequential, iterative 
solution of the thermal energy equation in the solid- 
phase until convergence is achieved for each time step 
of the calculation. 
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respectively, when Re = 100. Simulations for lower 
Reynolds number flows take longer to terminate 
executions since lower Reynolds number flow simu- 
lations require smaller time-steps ; the time-step 
reduction (and thus the increase in the simulation 
time) is proportional to the reduction in Reynolds 
number. Analogou:j to our base computations, in this 
lower Reynolds number regime, the effect of change 
in our computational domain size on the result was 
also tested and negligible dependency between the two 
was observed. 

2.5. The vortex tube features 
The vortex is introduced upstream of the sphere, 

advects with the superimposed uniform flow, and has 
a relatively simple configuration-it is an initially cyl- 
indrical tube whose axis of symmetry is initially nor- 
mal to the uniform flow and parallel to the y-axis. The 
vortex tube has a small central core ; within this core, 
the initial velocity distribution in the vortex tube is 
that of solid body rotation reaching an imposed v,,, 
at radius 0‘. vman a.nd CJ are specified at time t = 0. 
Outside this inner core, the vortex induces a velocity 
field of a potential vortex ; thus, the velocity induced 
by the vortex vanishes as r -+ co. This two-dimen- 
sional vertical tube is known as a Rankine vortex [l 11, 
and has the follow] ng stream function [ 121 : 

(7) 

where To is the initial non-dimensional vortex cir- 
culation at radius IS,,. To is positive when the vortex 
tube has counterclockwise rotation, and x0 and z0 
denote the initial location of the center of the vortex 
tube. Note the initial vortex tube circulation at radius 
o0 is To = ~~uJ~v,,,~. After the initial time, the advec- 
tion, diffusion, and distortion (strain) on the vortex is 
determined through the solution of the Navier-Stokes 
equations. More fundamental information on the vor- 
tex tube such as lemporal changes in its tangential 
velocity and vorticity are given in Ref. [7]. 

2.6. Flow interaction 
The sphere is placed in a uniform flow (here also 

called the ‘base flow’) and thus, gradually develops a 
standing vortex ring in its aft position. Note that, in 
the absence of the vortex, the flow remains axi- 
symmetric with respect to the z-axis (Fig. 1). The 
vortex is introduced 10 sphere radii upstream of the 
sphere and advects, initially, with the superimposed 
uniform free-stream flow and, later, with the local 
velocity ; it takes about 10 residence time units for the 
vortex to arrive at the vicinity of the sphere ; there, we 
observe vortex stretching in the cross-flow direction 
and thus, a full un:steady and three-dimensional inter- 
action occurs between the vortex and the sphere. The 

axis of Fig. 1; here, a ‘head-on’ collision between the 
sphere and the vortex is observed, resulting in a slow- 
down of the vortex advection and also vortex stretch- 
ing in the cross-flow direction. When the vortex 
advects ‘off the axis, the dynamic interaction between 
the two is relatively weaker and the vortex therefore 
advects nearly steadily with the base flow. It takes 
nearly 25 residence time units for the vortex to arrive 
at the sphere, interact with it, and then travel 
sufficiently far downstream to have insignificant 
influence. Many details of the interactions were 
reported in Ref. [7]. 

2.7. Flow and temperature perturbations 
There are five parameters that characterize the 

quantitative significance of the vortex-temperature 
stratification interaction with the sphere : the vortex 
initial core size (oO) and initial maximum tangential 
velocity (v,,,J, the offset distance between the vortex 
initial position and the base flow symmetry axis (d,), 
the base flow Reynolds number (Re), and the tem- 
perature gradient in the initial and free stream strati- 
fied temperature profile represented by K [see equation 
(6), section on Initial Conditions]. We place the initial 
position of the vortex center either ‘on’ the base 
flow symmetry axis (do = 0) or slightly ‘off it 
(d,, = f 1, +2,. .) and, as stated above, 10 sphere 
radii upstream of the sphere. A positive or negative d, 
means an offset distance from the z-axis in the x, z 
symmetry plane in the positive or negative x direction, 
respectively ; this is shown in Fig. 1. 

Reynolds number Re represents the base flow iner- 
tia-the underlying driving mechanism of the primary 
flow disturbed by the vortex-induced secondary flow. 
We specify an initial radius (oO) for the vortex which 
defines the vortex core within which vorticity is uni- 
formly distributed ; we select the strength of this vor- 
ticity so that the maximum velocity at the core of 
the vortex (v,,,J represents an acceptable fluctuation 
from the uniform flow. This fluctuation is taken to be 
less than the free stream velocity. For example, to 
represent a 20% fluctuation in the base flow, we pick 
v,,,~ = 0.2. Outside the inner core, the velocity pattern 
is that of a potential vortex. Thus, the vortex structure 
and strength are initially fully characterized by the 
two parameters co and v,,,,,, non-dimensionalized by 
the sphere radius and the strength of the uniform 
stream, respectively. The vortex initial circulation is 
l-0 = 2KQovmaXo. Figure 1 shows a typical vortex 
location upstream of the sphere. 

To, K, and do could each be either positive or nega- 
tive. A positive To is a counterclockwise vortex cir- 
culation ; positive K means the initial temperature 
gradient aligns with the positive x-axis in the principal 
x-z plane; a positive d, is an offset distance in the 
positive x-axis in the principal plane. We have studied 
all possible combinations of the signs of To, K, and d0 
by keeping the vortex circulation counterclockwise 

dynamic interaction is the strongest when the vortex and varying the signs of K, and do. (Note that a sim- 
is initially introduced ‘on’ the base flow symmetry ultaneous reversal of the sign of all three parameters 
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yields the same flow.) Our study covers d, = 0, f 1, 
&-2, f3, +4, 25; go= 0.25, 0.5, 1, 2, 3, 4; 
v,,,,,~ = 0.1,0.2,0.3,0.4; 20 ,< Re < 100, and 0.15 < 
K < 0.60; this involves a range of vortex circulation 
varying by nearly two order-of-magnitudes : I,, ~(0.16, 
10.05). 

2.8. Reduction of the computation cases 
The initial gas-field temperature profile is governed 

by equation (6). For particular values of To and d,, 
we need to compute the stratification effect for both 
positive and negative values of K; this requires two 
computations. Furthermore, a different computation 
can be made for each set of maximum and minimum 
free stream temperature. Since the energy equation is 
linear in this constant-property simulation, it is 
instead possible, by using the superposition principle, 
to compute the sphere Nusselt number, first, for con- 
stant free stream and initial temperature 

T 
Tc,,,.,;j, E max’0 ; Tmln~O 

and, next, due to the temperature variation 

f 
T’ax,o - Tm,o 

Tw..r~~ = 9 1 tanh(lcx). (9) 
\ L / 

Summing the two results for the sphere Nusselt num- 
ber yields the result for the Nusselt number in an 
initial temperature profile of the form 

while subtracting them yields the Nusselt number due 
to 

To (x, Y, 4 = Tc,y,zj I - 7-w2 = 
(Tmax,o ; Lo) 

+ 

( 

T llKU,O - Tm,n,o 

2 
) 

tanh(-rcx). 

The last two equations are the same as equation (6) 
with K > 0 and K < 0. Therefore, the Nusselt number 
with the sphere exposed to both possible orientations 
of the temperature gradient (dT/dx cc 
rcx, IC > 0, K < 0) are readily computed using super- 
position of the results. Furthermore, the Nusselt num- 
ber for the stratified (second) portion will be pro- 
portional to the temperature term (T,,,,,,o- Tmln,o)/ 
(T,,,,o+ T,,,i,,O) ; a scaling effect is obvious so that sep- 
arate calculations for different values of Tmax.o and 
T,,,i,,o are not necessary. 

A separate technique for reduction in com- 
putational time was also incorporated and has been 
discussed in the next section. 

2.9. The sphere convective heat transfer 
The sphere convective heat transfer, represented by 

its Nusselt number, is computed through 
Nu(t) = 2a’h’/kL (with h’ and kb being the convective 
heat transfer coefficient and the gas conductivity) 
which after a standard simplification and non-dimen- 
sionalization yields 

where i;, is the sphere temperature at the interface 
averaged over the surface. 

Since the cold sphere is injected impulsively in the 
hot ambient gas, it initially experiences a stronger heat 
transfer and therefore a large Nusselt number. If the 
flow is axisymmetric and the gas temperature profile 
is uniform, the sphere Nusselt number gradually 
retains a steady value. In an axisymmetric flow, it 
takes nearly five resident time units for the sphere 
Nusselt number to reach a steady value. The flow 
pattern and therefore the Nusselt number is however 
different when a vortex advects in the base flow- 
the vortex advection breaks down the flow symmetry, 
Nusselt number fluctuates continuously and cannot 
attain a steady value. It is therefore more convenient 
to regard overall estimates by considering time-aver- 
aged and root-mean-squared values according to 

1 

s 

‘2 
Nu = - 

t2-tl ,, 

Nu(t) dt 

and 

(11) 

1 
= J s .- ” [Nu(t)-%I2 dt. 

t2-t1 f, 

(12) 

Further, there is substantial computational advan- 
tage in normalizing z and Nu,, using their cor- 
responding values in an axisymmetric flow, Nu,, and 
N&l?,_. While different values are obtained for Nu 
depending on the number of computational mesh 
points (ordinarily, 41 in each direction), the same 
values of Nu/Nu,, are very well approximated with 
only half as many mesh points (21 in each direction) 
since both the numerator and denominator here 
change by the same amount, about lo%, due to 
reduction in mesh points. We therefore consider -~ 
NulNu,, and Nu,,/Nu,,,~~ in our results. 

When the initial gas-phase temperature profile is 
uniform, Nu is a measure of the flow configuration 
due to the base flow and/or the vortex induced dis- 
turbances; i.e., it is independent of the characteristic 
temperature difference in the domain (T’ - Tso). When 
the initial profile is stratified, and since 
h’ N q”/(T - co) and q” N (Tmax,O - Tm,,,J, it results 
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that Nu - ( TmaX,O - ~&,J/( p - c,). The non- 
dimensional form of the average free stream tem- 
perature T is given by equation (8). Therefore, the 
sphere Nusselt number is proportional to a non- 
dimensional temperature difference characterizing the 
initial conditions in temperature stratification and 
remains invariant to initial conditions in temperature 
for as long as this ratio is sustained. (Here, a high- 
order elTect induced by the dependency of the ther- 
mophysical properties on temperature values is dis- 
regarded.) This noted difference with the uniform tem- 
perature case is of significance in understanding the 
sphere heat transfer in the stratified domain. 

In equations (11) and (12), t, = 2 and t2 = 25 ; i.e., 
we disregard the data for t ~(0,2) ; this is the time 
needed for the initial computational fluctuations in 
the pressure drag to vanish. To minimize the influence 
of this initial data ‘exclusion on the final outcome, we 
also estimate the normalizing values Nu,, and Nu,,,,,~~ 
with this criterion imposed. Computed Nu/Nu,, are 
more invariant tc’ this initial data exclusion than - 
N~,,,INu,,,~~. (Sample comparisons shown Nu/ 
Nu,, and Nu,,/XU,,~~ values computed with and 
without this initial data exclusion vary by near or less 
than 0.05 and 8%, respectively.) 

3. RESULTS 

In the absence of the vortex, while the velocity field 
remains axisymmetric, the temperature stratification 
[equation (6)] yiellds an asymmetric temperature dis- 
tribution ; it also makes one side of the recirculation 
zone hotter than the other. The vortex advection 
breaks down the velocity field symmetry. The thermal 
boundary layer is affected by both the advection of 
the vortex and the temperature stratification. Also, 
the vortex could drastically change the structure of 
the recirculation zone in the sphere near wake and 
cause its otherwise confined pockets of vorticity to be 
ejected and to ativect with the outer stream [7]. 
Further, due to the coupling between the velocity and 
temperature field, all developments in the velocity 
boundary layer induced by the vortex advection have 
their corresponding effect on the thermal boundary 
layer as well. 

3.1. Global self-similarity 
In the absence of the vortex, Nu and Nu,, are ident- 

ical; one may predict the sphere Nusselt number in 
an axisymmetric flow using the correlation [8] 

Nu,, = I+ (1 + .Pv Re)‘13 Re’-O” Re < 400. (13) 

If a vortex advea:ts in the gas-phase with an initially 
uniform temperature field and therefore perturbations 
are limited to that in the flow only (K = 0, To # 0), 
then the resulting deviations in Nusselt number due 
to the vortex are governed by [6] 

Nu,,,, 
=== = 1 +0.019~Re”.n0 tanh 
Nu,, 

(14) 

so that NuKZo/Nu,,- 1 varies with change in vortex 
circulation To and cl, until Ido1 = 2 beyond which (but -~ 
within Id,,1 E [2,5]) Nu/Nu,,- 1 reaches an asymptotic 
value. This is shown in Fig. 2 and is well-discussed in 
ref. [6]. 

The situation is different when both flow and ther- 
mal perturbations coexist due to the simultaneous 
presence of the vortex and gas-phase temperature 
stratification. Here, the vortex ‘stirs’ the hotter gas 
with the cooler one near the sphere as well as itself 
inducting a secondary convective effect on the sphere 
heat transfer. Results for Nu(t) in several rep- 
resentative cases are shown in Fig. 3(a) and (b). Con- 
sider, for instance. vortex advection with counter- 
clockwise circulation in a stratified temperature gas 
field with a positive temperature gradient 
(dT/dx > 0, K > 0), and with the vortex advecting 
in the second quadrant of the principal x-z 
plane (d,, > 0). With the vortex advecting upstream 
of the sphere, the cooler gas from the third and 
fourth quadrant (region of T,,,& is advected into 
the first and second and mixed with the hotter one 
(zone of T,,,.X,O), influencing Nu(t) according to 
Nu - q” N ( Tmax,O - T&J. Consequently, transient 
Nusselt number continuously fluctuates due to these 
combined effects of vortex-induced flow configuration 
and temperature variation. 

Figure 4(a)-(c) show the temperature distribution 
near the sphere at various times. At earlier times, 
while the vortex is far upstream of the sphere and the 
velocity and thermal boundary layers are about to 
form, the domain is still relatively undisturbed (Fig. 
4(a)). During this period, the sphere Nusselt number 
drops, as it does in an axisymmetric flow, to reach a 
steady value (Fig. 3(a) and (b), t < 5). Near t z 10, 
the thermal boundary layer is established, the vortex 
is near the sphere, the cooler and the hotter gas have 
been displaced due to vortex circulation (Fig. 4(a)) 
resulting in the fluctuation in Nusselt number (Fig. 
3(a) and (b), t z 10). After the vortex advects down- 
stream of the sphere, the recirculating effect of the 
vortex has an opposite effect resulting in a reversed 
fluctuation (Fig. 3(a) and (b), 10 < t < 20). The fluc- 
tuation eventually vanishes as the vortex advects 
sufficiently downstream of the sphere (Fig. 4(c) ; Fig. 
3(a) and (b), t -+ 25). 

Since the Nusselt number is a manifestation of the 
heat exchange between the gas and the sphere, it is 
not surprising that analogous fluctuations are 
observed for the sphere heat flux (Fig. 5). 

Figure 6 shows a comparison for the transient Nus- 
selt number influenced by vortex advection between 
the cases of a uniform and of a stratified temperature 
field. Previous observations [6] have shown that, in 
a uniform temperature field, when the vortex with 
positive circulation has an initial position upstream 
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Fig. 2. Existence of self-similarity in time-averaged fluctuations of Nusselt number for a liquid or solid 
sphere influenced by vortex advection in a uniform temperature field [equation (14), from ref. [6]]. 

of the sphere and is ‘above’ the flow symmetry axis 
(d, > l), Nu(t) consistently ‘overshoots’ the axi- 
symmetric pattern ; the reverse is true when d,, < - 1 ; 
with d,, = 0, Nu(t) criss-crosses through the axi- 
symmetric one. The stratification changes this picture 
qualitatively and quantitatively ; vortex circulation 
transports the hotter gas to the cooler zone and vice 
versa and thus modifies substantially the sphere heat 
transfer; both the instantaneous and averaged heat 
transfer are modified. 

The coupled vertical-stratification effect follow the 
correlations 

(15a) 

Nu,,, __ - 2 -2.04 ( T’“a;~;_~“) _- 
N&X 

(15b) 

within the range of our parameter study: 
20GReGlOO; 0.25<a,<4; 0.1 <v,,,,<O.4; 
-5 < d,, d 5, 0.15 < K < 0.6. This covers a range of 
vortex circulation varying by nearly two order-of- 
magnitudes : ro~(O. 16, 10.05). All our simulations are 
for a solid sphere in hot air and so Pr, = 0.739. Cor- 
relations (15) are shown in Fig. 7(a) and (b). The 
left-hand side of these equations represent the time- 
averaged value of the sphere Nusselt number while 
both flow and thermal perturbations are present. The 
first term on the right hand side (rhs) represents the 
sole vortex effect in a uniform temperature field, is 
from equation (14), and results as IE -+ 0 ; the second 
term on the rhs is the coupled vortex-stratification 
effect. The second term on the rhs of equation (15a) 
or (15b) is an even function of d,,. Therefore, over our 
parameter range, the second term is always positive 
in equation (15a) and always negative in equation 

(15b). The linear summation of the two terms on the 
rhs is not surprising since the temperature satisfies 
a linear equation and superposition of the results is 
possible. Note that the uniform and the stratified tem- 
perature problems have identical velocity fields. The 
stratified free stream temperature can be viewed as 
the superposition of stratification, with positive and 
negative temperatures, onto a uniform temperature 
field at the average free stream temperature. 

When K is large, the regions of T,,,ax,o or T,,,,,,. tem- 
peratures are close to the sphere ; by contrast, small K 
means the regions at temperatures T,,,ax,o or T,,,i,,o are 
relatively far from the sphere. Qualitatively, in the 
former case, a small vertical perturbation ‘stirs’ the 
cooler and the hotter gas as much as a relatively large 
one does in the latter case. Thus, we expect that 
G/K-- c/K N T”,K-~ where a and b are 
positive exponents. Furthermore, it is not surprising 
that, at large d,, the perturbation decreases as d,, 
increases. Similar behavior was observed in the uni- 
form temperature study [6]. The overall effect is that 
Nu,,o/Nu,,-Nu,=o/Nu,, - r;rcb/d,, for large values 
of d,,, as shown by equations 15(a) and 15(b). [The 
exponents in equation (15) are chosen to reduce the 
data scattering and to optimize the fit.] 

The first term on the rhs of equations (15) depends 
on both Re and To, and the second on To only. This 
indicates that the stratification effect on the sphere 
Nusselt number, during vortex interaction, has the 
same Reynolds number dependence as the axi- 
symmetric heat transfer case does. The Nusselt num- 
ber for the sphere-vortex interaction in a uniform free 
stream temperature has a different Reynolds number 
dependence than the axisymmetric flow does [6], also 
seen by comparing equations (13) and (14). 

In the absence of temperature stratification [equa- 
tion (14)], the average sphere convective heat transfer 
may be augmented or reduced merely depending on 
the ‘sign’ of two parameters : the direction of the vor- 
tex-induced vorticity (r, N V x v,&,~ = co; being 
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clockwise or counterclockwise) and the sign of the 
offset distance d, ; d,F, > 0 augments the average 
sphere heat transfer while C&F, < 0 reduces it. With 
the stratification present (K # 0) where IC > 0 and 
K < 0 refer to dT,/dx > 0 and dT,/dx < 0 in the free 
stream, respectively, equations (15) imply that 
counterclockwise circulation and positive temperature 
gradient (T,,K > 0) augment the sphere Nusselt 
number. The Nusselt number is reduced when To and 
K have opposite signs. Equation (15) indicates that a 
change in the sign of either K or circulation To pro- 
duces a change in the sign of the averaged Nusselt 
number deviation. A change only in the sign of d, 
produces a different Iv%(t) while, as seen in equations 
(15), Nu remains nearly unchanged. 

Finally, we consider a cold liquid droplet in a hot 
gas subject to simultaneous perturbations both in the 
flow and temperature field, as is the case for droplets 
in a spray combustion system. Due to the large density 
ratio between the liquid and the gas phase, the liquid 
has a relatively higher inertia, keeping the droplet 
internal circulation weak. Thus, the droplet interface 
velocity remains very small compared to the free 
stream gas velocity. The dynamic viscosity of the 
liquid is significantly higher than the gas viscosity and 
also contributes to the reduction of the liquid velocity. 
However, the internal velocity is still an important 
factor in the droplet internal heat transfer. The struc- 
ture of the viscous and thermal layers on the gas side 
of the interface do not change substantially, and so 
only minor changes in Nusselt number for the gas- 
phase boundary layer result. (However, internal cir- 
culation cannot be neglected because it will still have 
a significant effect on the interface temperature and, 
therefore, on the heat transfer through the gas-phase 
boundary layer.) These qualitative results are not 
changed by the thermocapillary effect at the interface 
[I 3,141. Therefore, we may approximate Nusselt num- 
ber for a cold droplet (without vaporization) in a hot 
gas from correlations or simulations sought for a rigid 
sphere, and vice versa. We have further verified this 
in our investigation since simulations for a liquid 
sphere in the presence of an advecting vortex in a 
stratified temperature field yielded Nu,,~/Nu,, values 
close to those for a solid sphere, fitting equations (15), 
and thus confirming that this correlation could be 
used for a liquid sphere in comparable condition, as 
well. This is also shown in Fig. 7. 

Both correlations [equations (14) and (15)], con- 
sistent with the ‘definition’ of a perturbation, hold for 
bounded values of the fluctuating velocity; i.e., the 
vortex is not strong enough to reverse the free stream 
flow direction : &,,,/U~ < 1. 

4. CONCLUSIONS 

We have investigated the unsteady interaction 
between an initially cylindrical vortex tube and a solid 
sphere in a stratified temperature field, thereby allow- 
ing coupled flow-thermal perturbations to affect the 

sphere Nusselt number. Particular attention has been 
given to the transient and time-averaged values of 
Nusselt number. A correlation quantifying the sim- 
ultaneous effect of the advecting vortex and tem- 
perature stratification on the sphere heating [equa- 
tions (15)] has been produced, signifying a self-similar 
behavior for the average effect in this unsteady prob- 
lem. The reported correlation compliments the exist- 
ing correlations for a sphere heating in an axi- 
symmetric flow without an advecting vortex [8], and 
also for a sphere heating perturbed solely by a vertical 
disturbance [6]. The correlation may also be used for 
a liquid sphere in comparable conditions in the pres- 
ence of an advecting vortex. 

Time-averaged Nusselt number is nearly linearly 
proportional to the vortex circulation and mono- 
tonically varies with change in the gas-phase tem- 
perature gradient; it also has a dependence on the 
vortex initial displacement from the sphere through 
the product of an algebraic and an exponential 
term ; [see equations (15)]. Due to this exponential 
dependence, the influence of the vortex on the time- 
averaged Nusselt number reaches an asymptote for 
relatively larger do. Our computations here are lim- 
ited to Id,,/ < 5. Naturally, one expects that when 
the vortex advects ‘very’ far from the sphere, it will 
have negligible effect on the sphere heating; the 
correlations do not include the expected decay for 
equation (14) and for the first term on the rhs of 
equation (15). 

Though this study concerned a particular setup of 
orientation and initial conditions for vortex advec- 
tion and temperature stratification, and thus its 
findings are quantitatively limited to such particular 
couplings, the qualitative observations should have 
more general results. Namely, the coupled flow- 
thermal perturbations can have substantial effect on 
the heating mechanism, and the Nusselt number 
does not remain independent of the temperature 
values, an observation contrasting those in a uniform 
temperature field. Based on our findings, it may be 
speculated that, in a spray combustion system, the 
interaction between the naturally existing coupled 
flow-thermal perturbations and spray droplets within 
the Kolmogorov scale can have significant effects on 
droplet convective heat transfer and therefore on 
their eventual evaporation. 

These calculations have not considered the effect of 
the deflection of the sphere due to the fluctuating 
velocity. Nor has the combined effects of an array of 
vertical structures been considered. These important 
issues should be addressed in the future. 
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Fig. 4. The thermal boundary layer of the sphere in the 
stratified temperature field influenced by the vortex advec- 
tion; (a) t=2; (b) t= 10; (c) t=25; (d,=2,~,,,~=0.4, 

g,, = 1, K = 0.3, Re = 100). 
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